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In this talk, we will prove some properties about the spectrum of the un-
bounded symmetric operator ∆k on the Hilbert space L2(Γ\H, χ, k) when

Γ\H is compact.
To do so, we will prove some facts about compact operators. Then we will
introduce some integral operators that are self-adjoint, compact and that
will commute with ∆. Finally, we will deduce the spectral theorem for ∆
from the well-known spectral theorem for compact operators.

1 Preliminaries

Definition 1.1 (Linear, bounded, compact operators). Let h be a separable Hilbert
space, L(h) the vector space of linear operators T : h→ h.

1. an operator T ∈ L(h) is said to be bounded if there exist a constant C such that

|Tx| ≤ C|x| ∀x ∈ h

The smallest such C is called the norm of the operator, and is denoted |T |. A
bounded operator is continuous.

2. A bounded operator T ∈ L(h) is said to be self-adjoint if

〈Tf, g 〉 = 〈 f, Tg 〉 ∀f, g ∈ h

3. an f ∈ h is said to be an eigenvector of an operator T with eigenvalue λ if f 6= 0
and

Tf = λf

Given λ, the set of eigenvectors with eigenvalue λ is called the λ-eigenspace and
is noted

Eλ = {f ∈ h , T f = λf}
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Moreover, if T ∈ L(h) is bounded and self-adjoint, then λ ∈ R and its eigenspaces
are orthogonal.

4. an operator T ∈ L(h) is said to be compact if it maps bounded sets to compact
sets. a compact operator is automatically bounded and continuous.

Since h is separable, we will use the sequential characterization of compactness : A
linear operator T ∈ L(h) is compact if and only if it is sequentially compact : For every
sequence (xn) ⊂ h of unit vectors, there is a subsequence (xnk) ⊂ h such that T (xnk)
is convergent. We will use this characterization of compactness to prove the following
:

Theorem 1.2 (Spectral theorem for compact operators). Let T ∈ L(h) be a compact
self-adjoint operator, then h has an orthonormal basis {fi}i≥1 consisting of eigenvec-
tors of T , so that

Tfi = λifi , λi −−−→
i→∞

0

In particular, the eigenspaces Eλi are finite dimensional.

Proof. Let T ∈ L(h) be a self-adjoint, compact operator, we first show that

|T | = sup
x∈h
x 6=0

〈Tx, x 〉
〈x, x 〉

Let 0 6= x ∈ h, put B := |〈Tx,x 〉|
〈 x,x 〉 .

On one hand, one has

|〈Tx, x 〉| ≤ |Tx||x| ≤ |T ||x|2 = |T |〈x, x 〉 ⇒ B ≤ |T |

On the other hand, let λ > 0, as 〈Tx, Tx 〉 = 〈T 2x, x 〉, one has

〈Tx, Tx 〉 =
1

4
|2〈Tx, Tx 〉+ 2〈T 2x, x 〉|

≤ 1

4
|〈T (λx+ λ−1Tx), λx+ λ−1Tx 〉 − 〈T (λx− λ−1Tx), λx− λ−1Tx 〉|

≤ 1

4
|〈T (λx+ λ−1Tx), λx+ λ−1Tx 〉|+ 1

4
|〈T (λx− λ−1Tx), λx− λ−1Tx 〉|

≤ B

4
〈λx+ λ−1Tx, λx+ λ−1Tx 〉+

B

4
〈λx− λ−1Tx, λx− λ−1Tx 〉

=
B

2
λ2〈x, x 〉+

B

2
〈λTx, Tx 〉.

Put λ = ( |Tx||x| )
1
2 , we get

|Tx|2 ≤ B|x||Tx| ⇒ |Tx| ≤ B|x| ⇒ |T | ≤ B

Now let Σ = {Eλi ⊂ h, i = 1, 2...}. By ordering Σ by inclusion, Zorn’s Lemma implies
that it has a maximal element, say E. We show that

h =
⊕
i≥1

Eλi
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– the (Eλi)i≤1 are mutually orthogonal : Let u ∈ Eλi , v ∈ Eλj , i 6= j

λi〈u, v 〉 = 〈Tu, v 〉 = 〈u, Tv 〉 = λj〈u, v 〉
⇒ 〈u, v 〉 = 0

– Spanh(E) is dense in h :

let V = Spanh(E) and suppose 0  V  h, there exist then a h0 = V ⊥ such that

h = V ⊕ h0, and h0 6= 0

As T (V ⊥) ⊂ V ⊥ and T/h0
is compact self-adjoint, we only have to show that T

has an eigenvector in h0, this will contradict the maximality of Σ. Since T is
compact, one has a sequence (xi)i≥1 of unit vectors such that

|〈Txi, xi 〉| −−−→
i→∞

|T |

As 〈Tx, x 〉 = 〈x, Tx 〉 = 〈Tx, x 〉, the 〈Txi, xi 〉 are real. We may thus replace
our sequence by a sub-sequence 〈Txi, xi 〉 −−−→

i→∞
λ = ±|T |. If λ = 0 then we

are done, since T = 0 has eigenvectors. If not, as T is compact, we have a
subsequence (xi) such that Txi −−−→

i→∞
v First, we have

|〈Txi, xi 〉| ≤ |Txi||xi| = |Txi| ≤ |T ||xi| = |λ|

Now, one sees that

|λxi − Txi|2 = 〈λxi − Txi, λxi − Txi 〉 = λ2|xi|+ |Txi|2 − 2〈Txi, xi 〉
−−−→
i→∞

λ2 + λ2 − 2λ2 = 0.

Hence
λxi −−−→

i→∞
Txi −−−→

i→∞
v ⇒ xi −−−→

i→∞
λ−1v

But, since T is continuous, one has Txi −−−→
i→∞

T (λ−1v) = λ−1Tv

thus one gets finally that
λv = Tv

and hence, the contradiction.

Now let {fi}i≥1 be an ONB of h, and (λi)i≥1 the associated eigenvalues. We prove
that

λi −−−→
i→∞

0

Suppose it is not the case, then ∃ε > 0, (f ′i)i≥1 a sub sequence of (f ′i)i≥1 such that
Tf ′i > ε. Since all the Tfi are orthogonal, Tfi can not have any convergent subsequence
which contradicts the compactness of T .
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Exercise 1.3. Let K(h) = {T ∈ L(h) / T is compact }.
Show that K(h) is a closed linear subspace of L(h).
In particular, for every convergent sequence Tn in K(h) one has

Tn −−−−→
n→∞

T ∈ K(h)

Theorem 1.4 (Hilbert-Schmidt operators). Let X be a locally compact Borel-measurable
space, h = L2(X). Let K ∈ L2(X ×X). Then the operator

(Tf)(x) =

∫
X

K(x, y)f(y)dy

is a well defined, compact operator on h.

Proof. If {fi}i≥1 is an ONB of L2(X) then one has an ONB for L2(X ×X), namely
{fi, fj}i,j≥1.

Write

k(x, y) =
∑
i,j≥1

ki,jfi(x)fj(y), ki,j =

∫∫
X

k(x, y)fi(x)fj(y) dx dy

Define

kn(x, y) =

n∑
i=1

∑
j≥1

ki,jfi(x)fj(y)

and the following sequence of operators

Tnf =

∫
X

kn(x, y)f(y) dy

The Tn are compact since they map L2(X) to a finite dimensional subspace (spanned
by the fi for i = 1, ..., n) of L2(X) and thus their range is finite dimensional (every
bounded linear operator of finite rank is compact). One has

|(Tn − T )f |2 =

∫
X

(

∫
X

(kn(x, y)− k(x, y))f(y) dy)2 dx

≤
∫
X

(

∫
X

(kn(x, y)− k(x, y))2 dy)(

∫
X

f(y)2 dy)) dx (Hölder inequality)

=

∫
X

f(y)2 dy

∫∫
X

(kn(x, y)− k(x, y))2 dy dx

≤ |f |2(
∑
i≥n+1

∑
j≥1

|ki,j |2).
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Since |ki,j |L2(X×X) < ∞, the above sum has to go to zero as n −→ ∞, hence we get
that

|Tn − T | −−−−→
n→∞

0⇒ Tn −−−−→
n→∞

T ∈ K(L2(X)) (by Exercise 1.3)

Such operators are called Hilbert-Schmidt operators, with kernel k. In particular, if
k(x, y) = k(y, x) as we will see in the next section, the spectral theorem applies and
we get a decomposition of finite dimensional eigenspaces for T.
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2 Spectral theory for integral operators

Now let G = GL2(R)+, Γ ⊂ SL2(R) := G1 a discrete subgroup of G such that Γ\H is
compact. Let χ be a unitary character of Γ and h = L2(Γ\G, χ). Let φ ∈ C∞c (G) and let
(π,H) be an arbitrary representation on a Hilbert space H. We define π(φ) ∈ End(H)
by

π(φ)f =

∫
G

φ(g)π(g)f dg for f ∈ H, g ∈ G

It is well defined since g 7−→ φ(g)π(g)f is continuous in the compact support of φ,
and thus Borel-integrable.
Moreover, one has

|π(φ)f | ≤
∫
G

|φ(g)π(g)f | dg

≤ |f | sup
g∈Supp(φ)

|π(g)|
∫
G

|φ(g)| dg

≤ |f |B
∫
G

|φ(g)| dg <∞.

Thus π(φ) is a bounded operator.

Now let π = ρ the regular right representation of G on h (which is unitary) and
define for every φ ∈ C∞c (G) the operator ρ(φ) ∈ L(h) by

(ρ(φ)f)(g) =

∫
G

φ(h)(ρ(h)f)(g)dh =

∫
G

φ(h)f(gh)dh

For this operator to be well defined, we need to show that ρ(φ)f is square integrable.
We make use of the unitarity of ρ. Indeed, one has

|ρ(φ)f |2 = 〈 ρ(φ)f, ρ(φ)f 〉 = 〈
∫
G

φ(g)π(g)f dg,

∫
G

φ(h)π(h)f dh 〉

=

∫
G

∫
G

φ(g)φ(h)〈 ρ(g)f, ρ(h)f 〉 dg dh.

Since ρ is unitary, ρ(f), ρ(g) are unitary operators and therefore, by Cauchy-Schwartz

|〈 ρ(g)f, ρ(h)f 〉|2 ≤ 〈 ρ(g)f, ρ(g)f 〉〈 ρ(h)f, ρ(h)f 〉 ≤ 〈 f, f 〉2

Thus
|〈 ρ(g)f, ρ(h)f 〉| ≤ 〈 f, f 〉
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and finally

|ρ(φ)f |2 ≤ |f |2(

∫
G

|φ(g)| dg)2 <∞

Recall that every element of G has a representation

γhu ∈ Γ\G/Z+ and f(γhu) = χ(γ)f(h) ∀f ∈ C∞(Γ\G, χ)

where Z+ = 〈uI2〉u>0 is the subgroup (in the center of G) of positive scalar matrices.

For θ ∈ R, let κθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ K = SO2

Proposition 2.1. Let φ ∈ C∞c (G)

(i) The operator ρ(φ) ∈ L(h) is a Hilbert-Schmidt operator. In particular, it is
compact and maps L2(Γ\G, χ) to C∞(Γ\G, χ).

(ii) if φ(g) = φ(g−1) then ρ(φ) is self-adjoint.

(iii) if φ(κθg) = e−ikθφ(g) then ρ(φ) maps L2(Γ\G, χ) to C∞(Γ\G, χ, k).

Proof. (i) Consider

(ρ(φ)f)(g) =

∫
G

f(gh)φ(h) dh

First we make the substitution h 7→ g−1h and use our representation of g ∈ G as
γhu ∈ Γ\G/Z+

(ρ(φ)f)(g) =

∫
G

f(h)φ(g−1h) dh

=

∫
Γ\G/Z+

∫
Z+

f(γhu)φ(g−1γhu) du dh dγ.

This is possible since the groups involved in the decomposition are unimodular.
it is mainly due to the G-invariance of the Haar measures on these cosets. As Γ
is discrete, we get

(ρ(φ)f)(g) =

∫
Γ\G/Z+

∫
Z+

∑
γ∈Γ

χ(γ)f(h)φ(g−1γhu) du dh.

Let F be the closure of a fundamental domain for Γ\G/Z+ we can write

(ρ(φ)f)(g) =

∫
F

f(h)

∫
Z+

∑
γ∈Γ

χ(γ)φ(g−1γhu) du dh

=

∫
F

f(h)K(g, h) dh.
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We are left to prove that

K(g, h) =

∫
Z+

∑
γ∈Γ

χ(γ)φ(g−1γhu) du

is a Hilbert-Schmidt kernel, i.e. K ∈ L2(F × F). φ is smooth and supported in
K ′ (compact) and since Γ is discrete, one has

φ(g−1γh) 6= 0⇔ g−1γh ∈ K ⇔ γ ∈ g.K.h−1 ∩ Γ which is finite

Thus, we have a well behaved finite sum of smooth compactly supported func-
tions, one can indeed deduce that Kg(h) and Kh(g) are smooth, and thus so is
K(g, h). In particular, it is square integrable on the compact F × F .

Now let f ∈ L2(Γ\G, χ), then by Cauchy-Schwartz∫
Γ\G/Z+

|f(g)| dg ≤ |f ||1| <∞

Hence, as K(g, h) is smooth, the integral
∫
F
f(h)K(g, h) dh converges for every g

and thus ρ(φ)f ∈ C∞(Γ\G, χ).

(ii) Now suppose that φ(g) = φ(g−1) one sees that

K(h, g) =

∫
Z+

∑
γ∈Γ

χ(γ)φ(h−1γgu) du

=

∫
Z+

∑
γ∈Γ

χ(γ)φ(u−1g−1γ−1h) du

=

∫
Z+

∑
γ∈Γ

χ(γ−1)φ(g−1γ−1hu−1) du (χ is unitary)

=

∫
Z+

∑
γ∈Γ

χ(γ)φ(g−1γhu−1) du.

We make the change of variable u 7→ u−1. As Z+ is unimodular (Abelian), its
Haar measure is invariant under this change and one has

K(h, g) =

∫
Z+

∑
γ∈Γ

χ(γ)φ(g−1γhu) du = K(g, h).
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Finally,

〈 ρ(φ)f), f ′ 〉 =

∫
F

(

∫
F

f(h)K(g, h) dh)f ′(g) dg

=

∫∫
F

f(h)f ′(g)K(h, g) dh dg

=

∫
F

f(h)(

∫
F

f ′(g)K(h, g) dg) dh

= 〈 f, ρ(φ)f ′ 〉.

(iii) Suppose φ(κθg) = e−ikθφ(g), than one has

(ρ(φ)f)(gκθ) =

∫
G

f((gκθh)φ(h) dh

By making the change of variable h 7→ κ−1
θ h, one has

(ρ(φ)f)(g) =

∫
G

f((gh)φ(κ−1
θ h) dh

=eikθ
∫
G

f(gh)φ(h) dh = eikθ(ρ(φ)f)(g).

Thus ρ(φ)f ∈ C∞(Γ\G, χ, k).

Recall that C∞(Γ\G, χ, k) = {f ∈ C∞(Γ\G, χ)/f(gκθ) = ρ(κθ)f = e−ikθφ(g)}.
We have seen before that with a convenient choice of φ, we can restrict the range of
our operator ρ(φ) enough to C∞(Γ\G, χ, k) so that it commutes with ∆. We shall see
that with a right adjustment we might be able to choose such φ.

Let π : G → End(H) be a unitary representation of G on a Hilbert space H. By
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the same reasoning as in the proof above, one sees that

〈π(φ)v, w 〉 =

∫
G

φ(g)〈π(g)v, w 〉 dg

=

∫
G

φ(g)〈 v, π(g−1)w 〉 dg (π(g) is unitary)

= 〈 v,
∫
G

φ(g)π(g−1)w dg 〉

= 〈 v,
∫
G

φ(g−1)π(g−1)w dg 〉 (φ(g−1) = φ(g))

= 〈 v, π(φ)w 〉 ( by making g 7→ g−1)

Lemma 2.2. Let π : G→ End(H) be a unitary representation of G on a Hilbert space
H and let 0 6= f ∈ H.

(i) Let ε > 0, then there exists φ ∈ C∞c (G) such that π(φ) is self-adjoint and
|π(φ)f − f | < ε. In particular, if ε < |f | then

π(φ)f 6= 0

(ii) If π(κθ)f = eikθf for all κθ ∈ K = SO2 then we may choose φ so that

φ(κθg) = φ(gκθ) = eikθφ(g)

Proof. (i) As g 7→ π(φ)f is continuous, we can find an open neighbourhood U ∈ VI2
such that

|π(g)f − f | < ε ∀g ∈ U

Let φ0 ∈ C∞c (R), φ0 positive and Supp(φ0) ⊂ U such that
∫
G

φ0(g) dg = 1. We

assume that φ0(g) = φ0(g−1), by Proposition 2.1 (ii), π(φ0) is self-adjoint. We
have

|π(φ0)f − f | = |
∫
G

φ0(g)(π(g)f − f) dg| ≤
∫
G

φ0(g)|π(g)f − f | dg < ε

Moreover, if ε < |f | then clearly π(φ0)f 6= 0.

(ii) Now we shall construct carefully our φ0. Observe first that the map

σ : G×K −→ G

(g, κ) 7−→ κgκ−1

is continuous, hence σ−1 is open in G×K. As (1, κ) ∈ σ−1(U) for all κ ∈ K, there
exists an open neighbourhood U ′ ∈ V(I2,κ) such that U ′ = Vκ ×Wκ ⊂ G × K.
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As K is compact and Wκ is an open cover of K, there exists an r > 0 such that
{Wκi}0≤i≤r is a finite open cover of K. By taking

V =

r⋂
i=1

Vκi ⇒ κV κ−1 ⊂ U ∀κ ∈ K

Thus we obtain a neighbourhood in the identity of G with the desired property.
Now let φ1 ∈ C∞c (R), φ1 positive and Supp(φ1) ⊂ V such that φ1(g) = φ1(g−1)
and let

φ0(g) =

∫
K

φ1(κgκ−1) dg

Then φ0 is a positive function with support in U that satisfies φ0(g) = φ0(g−1)
and φ0(κgκ−1) = φ0(g) for all κ ∈ K. Assume now that π(κθ)f = eikθf , since
G = GK and K is compact, one has

π(φ0)f =

∫
G

φ0(h)π(h)f dh =

∫
G

∫
K

φ0(hκ)π(hκ)f dh dκ

=

∫
G

1

2π

2π∫
0

φ0(hκθ)π(hκθ)f dh dθ =

∫
G

1

2π

2π∫
0

φ0(hκθ)π(h)π(κθ)f dh dθ

=

∫
G

[
1

2π

2π∫
0

eikθφ0(hκθ) dθ ]π(h)f dh = π(φ)f.

where

φ(g) =
1

2π

2π∫
0

eikθφ0(hκθ) dθ

and clearly
φ(κθg) = φ(gκθ) = eikθφ(g) and φ(g) = φ(g−1)

A representation (π,H) of a group G on a Hilbert space H is said to be irreducible
if H has no proper non-zero closed subspace that is invariant under π.
If π is unitary, V is a proper non-zero π-invariant subspace of H, then there exists a
proper non-zero closed subspace V ⊥ such that

H = V ⊕ V ⊥

We start with the following :

Exercise 2.3. Let H be a Hilbert space and π : H → End(H) be a unitary represen-
tation. Let

Hk = {f ∈ H/π(κθ)f = e2iπkθf}
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Show that the Hk are orthogonal, and that

H =
⊕
k∈Z

Hk

We will use this result in the next proposition

Proposition 2.4. Let H be a non-zero closed subspace of h, which is closed under the
action of G. Then we have a Hilbert space decomposition

H =
⊕
k∈Z

Hk

where Hk = {f ∈ H/ρ(κθ)f = e2iπkθf}.

Moreover, if Hk 6= 0 then ∆ has a non-zero eigenvector in Hk ∩ C∞(Γ\G, χ).

Proof. We know that for g ∈ G, ∆ ◦ ρ(g) = ρ(g) ◦∆. Thus, one has

(∆ ◦ ρ(φ))f =

∫
G

φ(g)(∆ ◦ ρ(g))f dg

=

∫
G

φ(g)(ρ(g) ◦∆)f dg = (ρ(φ) ◦∆)f.

Now let H be a closed G-invariant subspace of h, from Exercise (2.3), one has a Hilbert
space decomposition H =

⊕
Hk where ρ(κθ)f = e2iπkθf for f ∈ Hk. We choose a k

such that Hk 6= 0 and let 0 6= f0 ∈ Hk.
From Lemma (2.2) there exists a φ ∈ C∞c (G) such that ρ(φ)f0 6= 0 and φ(κθg) =
φ(gκθ) = eikθφ(g). By proposition (2.1) ρ(φ) is a self-adjoint compact operator that
maps H into H ∩C∞(Γ\G, χ, k) = Hk ∩C∞(Γ\G, χ). By the spectral theorem, H has
an ONB {fi}i≥1 with respective eigenvalues λi. Pick a 0 6= λ ∈ Hk then Eλi is finite
dimensional and since ∆ commutes with ρ(φ), Eλ is invariant under ∆.
By the fundamental theorem of Algebra, every linear operator on a finite dimensional
complex vector space has an eigenvalue, thus ρ(φ) has at least an eigenvector in Hk ∩
C∞(Γ\G, χ).

Theorem 2.5. The space h = L2(Γ\G, χ) decomposes into a Hilbert space direct sum
of subspaces that are invariant and irreducible under the right regular representation
ρ.

Proof. Let Σ be the set of all sets S of irreducible invariant subspaces of L2(Γ\G, χ)
such that the elements of Si are mutually orthogonal. By ordering Σ by inclusion,
Zorn’s lemma implies that Σ has a maximal element, say S. Let H ′ be the orthogonal
complement of the closure of the direct sum of the elements of S. We want to show
that H ′ = 0.
Suppose not, and let 0 6= f ∈ H ′. The goal is to construct an irreducible subspace of
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H ′ which will contradict the maximality of S.
Let φ ∈ C∞c (G) such that ρ(φ) is self-adjoint, and ρ(φ)f 6= 0 (Lemma (2.2)). By the
spectral theorem, one has a non-zero eigenvalue λ with a finite dimensional eigenspace
Eλ ⊂ H ′.
Let  Li be a non-zero invariant subspace of Eλ under ρ(φ) and consider
L0 = min

i
{Eλ ∩ Li} (such a subspace exist since the Li are finite dimensional)

Let
V =

⋂
{W ⊂ H ′ / L0 = Eλ ∩W} ⊂ H ′

We only need to show that V is irreducible, which will as expected contradict the
maximality of S.
Suppose it is not, and consider V1, V2 invariant subspaces of V such that V = V1⊕V2.
Let 0 6= f0 ∈ V such that f0 = f1 + f2 with fi ∈ Vi for i = 1, 2. By definition of ρ,
every closed G-invariant subspace Vi is also invariant under ρ(φ).
One gets

(ρ(φ)f1 − λf1) + (ρ(φ)f2 − λf2) = ρ(φ)f0 − λf0 = ρ(φ)f0 − ρ(φ)f0 = 0

Thus ρ(φ)fi = λfi for i = 1, 2.
Without loss of generality, suppose f1 6= 0. Then f1 ∈ Eλ∩V1 ⊂ L0, and by minimality,
Eλ ∩ V1 = L0.
But since V ⊂ V1 that would imply that V = V1 which is impossible since V1 is proper.
Hence V is irreducible and thus the result.



3 Spectral decomposition 14

3 Spectral decomposition

Let k ∈ R and σ : κθ 7→ eikθ be the character of K = SO2. Let Rσ := C∞(K\G/K , σ)
be the commutative convolution subring of smooth compactly supported functions
φ that satisfy

φ(κ1gκ2) = σ(κ1)φ(g)σ(κ2) ∀κ1, κ2 ∈ K, ∀g ∈ G

We define a character of this ring to be a ring homomorphism into C.

Theorem 3.1. Let ξ ∈ HomR(Rσ,C) be a character of Rσ, and let Hξ be the space
of f ∈ L2(Γ\G, χ, k) that satisfies ρ(φ)f = ξ(φ)f for all φ ∈ Rσ.

(i) The space Hξ is a finite dimensional subspaces of C∞(Γ\G, χ, k)

(ii) For all ξ 6= η characters of Rσ, Hξ ⊥ Hη.

(iii)

L2(Γ\G, χ, k) =
⊕

ξ∈HomR(Rσ,C)
Hξ 6=0

Hξ

Proof. (i) Suppose 0 6= f ∈ Hξ. By Lemma (2.2), there exists φ ∈ Rσ such that

ρ(φ)f = ξ(φ)f 6= 0 ⇒ ξ(φ) 6= 0

Put λ = ξ(φ) ∈ C∗. By the spectral theorem, the eigenspace Eλ is finite dimen-
sional, and since by definition Hξ ⊂ Eλ, we have the result.

(ii) Now let η, ξ ∈ HomR(Rσ,C) such that η 6= ξ. Then there exists φ ∈ Rσ such
that η(φ) 6= ξ(φ).
We write φ = φ1 + iφ2, where

φ1 =
1

2
(φ(g) + φ(g−1)), φ2 =

1

2i
(φ(g)− φ(g−1))

Since

φ1(g−1) =
1

2
(φ(g−1) + φ(g)) = φ1(g)

φ2(g−1) = − 1

2i
(φ(g−1)− φ(g)) =

1

2i
(φ(g)− φ(g−1) = φ2(g)

By proposition (2.1) (ii), ρ(φ1), ρ(φ2) are self-adjoint.
Now without loss of generality, assume ρ(φ) is self-adjoint (by simply choosing
either φ1 or φ2) then

Eξ(φ) ⊥ Eη(φ)

∪ ∪
Hξ ⊥ Hη
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(iii) As done before, we suppose that there exists an orthogonal supplement H ′ such
that

L2(Γ\G, χ, k) = H ′ ⊕
⊕

ξ∈HomR(Rσ,C)
H(ξ)6=0

Hξ

And we show that H ′ = 0.
Suppose it’s not, and let 0 6= f ∈ H ′. By lemma (2.2) ∃φ0 ∈ Rσ such that
|ρ(φ)f − f | < ε. Hence we can arrange so that ρ(φ)f and f are not orthogonal.
By the spectral theorem, we have an ONB {fi}i≥1 of eigenvectors and thus the
spectral expansion

ρ(φ)f =
∑
i≥1

λifi

As ρ(φ)f is not orthogonal to f , there exists an i ≥ 1 such that fi is not orthog-
onal to f .
Let V = Eλi be the eigenspace consisting of such eigenvector. Then V is fi-
nite dimensional and since Rσ is commutative, V is invariant under ρ(φ) for all
φ ∈ Rσ. Indeed, one has

π(φ)(λifi) = π(φ)(π(φ0)fi) = π(φφ0)fi)

= π(φ0φ)fi) = π(φ0)(π(φ)fi) ∈ Eλi

Thus, we have

V =
⊕

ξ∈HomR(Rσ,C)
ξ(φ0)=λi

Hξ

But since f is not orthogonal to fi, it can not be orthogonal to all these spaces,
thus H ′ = 0 and hence our result.

We are finally able to present a version of the spectral theorem for ∆k, mainly we
have the following result

Corollary 3.2 (Main result). The space L2(Γ\H, χ, k) decomposes into a Hilbert space
direct sum of eigenspaces for ∆k.

Recall that
L2(Γ\H, χ, k) ∼= L2(Γ\G, χ, k)

∆k ←→ ∆

To see how this is a direct consequence of Theorem (3.1), observe that since ∆
commutes with the operators ρ(φ) on Rσ, the spaces Hξ are ∆-invariant and ∆ induces
a self-adjoint compact operator on each of them, and thus each of the Hξ decomposes
into a direct sum of ∆-Eigenspaces.
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