Discreteness of the spectrum of the Laplace-Beltrami operator

Sidi Mohammed Boughalem (shinokiz@gmail.com)

06. December 2018

In this talk, we will prove some properties about the spectrum of the unbounded symmetric operator Δ_k on the Hilbert space $L^2(\Gamma \setminus^{\mathcal{H}}, \chi, k)$ when $\Gamma \setminus^{\mathcal{H}}$ is compact.

To do so, we will prove some facts about compact operators. Then we will introduce some *integral operators* that are self-adjoint, compact and that will commute with Δ . Finally, we will deduce the spectral theorem for Δ from the well-known spectral theorem for compact operators.

1 Preliminaries

Definition 1.1 (Linear, bounded, compact operators). Let \mathfrak{h} be a separable Hilbert space, $\mathcal{L}(\mathfrak{h})$ the vector space of linear operators $T : \mathfrak{h} \to \mathfrak{h}$.

1. an operator $T \in \mathcal{L}(\mathfrak{h})$ is said to be bounded if there exist a constant C such that

$$|Tx| \le C|x| \quad \forall x \in \mathfrak{h}$$

The smallest such C is called the norm of the operator, and is denoted |T|. A bounded operator is continuous.

2. A bounded operator $T \in \mathcal{L}(\mathfrak{h})$ is said to be self-adjoint if

$$\langle Tf,g \rangle = \langle f,Tg \rangle \quad \forall f,g \in \mathfrak{h}$$

3. an $f \in \mathfrak{h}$ is said to be an eigenvector of an operator T with eigenvalue λ if $f \neq 0$ and

$$Tf = \lambda f$$

Given λ , the set of eigenvectors with eigenvalue λ is called the λ -eigenspace and is noted

$$E_{\lambda} = \{ f \in \mathfrak{h} , Tf = \lambda f \}$$

Seminar "Automorphic forms and Representation theory", WS 2018/19, Universität Regensburg

Moreover, if $T \in \mathcal{L}(\mathfrak{h})$ is bounded and self-adjoint, then $\lambda \in \mathbb{R}$ and its eigenspaces are orthogonal.

4. an operator $T \in \mathcal{L}(\mathfrak{h})$ is said to be compact if it maps bounded sets to compact sets. a compact operator is automatically bounded and continuous.

Since \mathfrak{h} is separable, we will use the sequential characterization of compactness : A linear operator $T \in \mathcal{L}(\mathfrak{h})$ is compact if and only if it is *sequentially compact* : For every sequence $(x_n) \subset \mathfrak{h}$ of unit vectors, there is a subsequence $(x_{n_k}) \subset \mathfrak{h}$ such that $T(x_{n_k})$ is convergent. We will use this characterization of compactness to prove the following :

Theorem 1.2 (Spectral theorem for compact operators). Let $T \in \mathcal{L}(\mathfrak{h})$ be a compact self-adjoint operator, then \mathfrak{h} has an orthonormal basis $\{f_i\}_{i\geq 1}$ consisting of eigenvectors of T, so that

$$Tf_i = \lambda_i f_i \quad , \quad \lambda_i \xrightarrow[i \to \infty]{} 0$$

In particular, the eigenspaces E_{λ_i} are finite dimensional.

Proof. Let $T \in \mathcal{L}(\mathfrak{h})$ be a self-adjoint, compact operator, we first show that

$$|T| = \sup_{\substack{x \in \mathfrak{h} \\ x \neq 0}} \frac{\langle Tx, x \rangle}{\langle x, x \rangle}$$

Let $0 \neq x \in \mathfrak{h}$, put $B := \frac{|\langle Tx, x \rangle|}{\langle x, x \rangle}$. On one hand, one has

$$|\langle Tx, x \rangle| \leq |Tx||x| \leq |T||x|^2 = |T|\langle x, x \rangle \Rightarrow B \leq |T|$$

On the other hand, let $\lambda > 0$, as $\langle Tx, Tx \rangle = \langle T^2x, x \rangle$, one has

$$\begin{split} \langle Tx, Tx \rangle &= \frac{1}{4} |2 \langle Tx, Tx \rangle + 2 \langle T^2 x, x \rangle| \\ &\leq \frac{1}{4} |\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \rangle - \langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \rangle| \\ &\leq \frac{1}{4} |\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \rangle| + \frac{1}{4} |\langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \rangle| \\ &\leq \frac{B}{4} \langle \lambda x + \lambda^{-1} Tx, \lambda x + \lambda^{-1} Tx \rangle + \frac{B}{4} \langle \lambda x - \lambda^{-1} Tx, \lambda x - \lambda^{-1} Tx \rangle \\ &= \frac{B}{2} \lambda^2 \langle x, x \rangle + \frac{B}{2} \langle \lambda Tx, Tx \rangle. \end{split}$$

Put $\lambda = (\frac{|Tx|}{|x|})^{\frac{1}{2}}$, we get

$$|Tx|^2 \le B|x||Tx| \Rightarrow |Tx| \le B|x| \Rightarrow |T| \le B$$

Now let $\Sigma = \{E_{\lambda_i} \subset \mathfrak{h}, i = 1, 2...\}$. By ordering Σ by inclusion, Zorn's Lemma implies that it has a maximal element, say E. We show that

$$\mathfrak{h} = \bigoplus_{i \ge 1} E_{\lambda_i}$$

– the $(E_{\lambda_i})_{i\leq 1}$ are mutually orthogonal : Let $u \in E_{\lambda_i}, v \in E_{\lambda_j}, i \neq j$

$$\lambda_i \langle u, v \rangle = \langle Tu, v \rangle = \langle u, Tv \rangle = \lambda_j \langle u, v \rangle$$
$$\Rightarrow \langle u, v \rangle = 0$$

- $Span_{\mathfrak{h}}(E)$ is dense in \mathfrak{h} :

let $V = \overline{Span_{\mathfrak{h}}(E)}$ and suppose $0 \subsetneq V \subsetneq \mathfrak{h}$, there exist then a $\mathfrak{h}_0 = V^{\perp}$ such that

$$\mathfrak{h} = V \oplus \mathfrak{h}_0$$
, and $\mathfrak{h}_0 \neq 0$

As $T(V^{\perp}) \subset V^{\perp}$ and $T_{/\mathfrak{h}_0}$ is compact self-adjoint, we only have to show that T has an eigenvector in \mathfrak{h}_0 , this will contradict the maximality of Σ . Since T is compact, one has a sequence $(x_i)_{i\geq 1}$ of unit vectors such that

$$|\langle Tx_i, x_i \rangle| \xrightarrow[i \to \infty]{} |T|$$

As $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$, the $\langle Tx_i, x_i \rangle$ are real. We may thus replace our sequence by a sub-sequence $\langle Tx_i, x_i \rangle \xrightarrow[i \to \infty]{i \to \infty} \lambda = \pm |T|$. If $\lambda = 0$ then we are done, since T = 0 has eigenvectors. If not, as T is compact, we have a subsequence (x_i) such that $Tx_i \xrightarrow[i \to \infty]{i \to \infty} v$ First, we have

$$\langle Tx_i, x_i \rangle | \le |Tx_i| |x_i| = |Tx_i| \le |T| |x_i| = |\lambda|$$

Now, one sees that

$$\begin{aligned} |\lambda x_i - Tx_i|^2 &= \langle \lambda x_i - Tx_i, \lambda x_i - Tx_i \rangle = \lambda^2 |x_i| + |Tx_i|^2 - 2\langle Tx_i, x_i \rangle \\ \xrightarrow[i \to \infty]{} \lambda^2 + \lambda^2 - 2\lambda^2 = 0. \end{aligned}$$

Hence

$$\lambda x_i \xrightarrow[i \to \infty]{} Tx_i \xrightarrow[i \to \infty]{} v \Rightarrow x_i \xrightarrow[i \to \infty]{} \lambda^{-1} v$$

But, since T is continuous, one has $Tx_i \xrightarrow[i \to \infty]{} T(\lambda^{-1}v) = \lambda^{-1}Tv$ thus one gets finally that

$$\lambda v = Tv$$

and hence, the contradiction.

Now let $\{f_i\}_{i\geq 1}$ be an ONB of \mathfrak{h} , and $(\lambda_i)_{i\geq 1}$ the associated eigenvalues. We prove that

$$\lambda_i \xrightarrow[i \to \infty]{} 0$$

Suppose it is not the case, then $\exists \epsilon > 0$, $(f'_i)_{i \geq 1}$ a sub sequence of $(f'_i)_{i \geq 1}$ such that $Tf'_i > \epsilon$. Since all the Tf_i are orthogonal, Tf_i can not have any convergent subsequence which contradicts the compactness of T.

Exercise 1.3. Let $K(\mathfrak{h}) = \{T \in \mathcal{L}(\mathfrak{h}) / T \text{ is compact }\}$. Show that $K(\mathfrak{h})$ is a closed linear subspace of $\mathcal{L}(\mathfrak{h})$. In particular, for every convergent sequence T_n in $K(\mathfrak{h})$ one has

$$T_n \xrightarrow[n \to \infty]{} T \in K(\mathfrak{h})$$

Theorem 1.4 (Hilbert-Schmidt operators). Let X be a locally compact Borel-measurable space, $\mathfrak{h} = L^2(X)$. Let $K \in L^2(X \times X)$. Then the operator

$$(Tf)(x) = \int_{X} K(x, y) f(y) dy$$

is a well defined, compact operator on \mathfrak{h} .

Proof. If $\{f_i\}_{i\geq 1}$ is an ONB of $L^2(X)$ then one has an ONB for $L^2(X \times X)$, namely $\{f_i, f_j\}_{i,j\geq 1}$.

Write

$$k(x,y) = \sum_{i,j \ge 1} k_{i,j} f_i(x) f_j(y), \quad k_{i,j} = \iint_X k(x,y) f_i(x) f_j(y) \, dx \, dy$$

Define

$$k_n(x,y) = \sum_{i=1}^n \sum_{j \ge 1} k_{i,j} f_i(x) f_j(y)$$

and the following sequence of operators

$$T_n f = \int\limits_X k_n(x, y) f(y) \, dy$$

The T_n are compact since they map $L^2(X)$ to a finite dimensional subspace (spanned by the f_i for i = 1, ..., n) of $L^2(X)$ and thus their range is finite dimensional (every bounded linear operator of finite rank is compact). One has

$$\begin{split} |(T_n - T)f|^2 &= \int_X (\int_X (k_n(x, y) - k(x, y))f(y) \, dy)^2 \, dx \\ &\leq \int_X (\int_X (k_n(x, y) - k(x, y))^2 \, dy) (\int_X f(y)^2 \, dy)) \, dx \quad \text{(Hölder inequality)} \\ &= \int_X f(y)^2 \, dy \iint_X (k_n(x, y) - k(x, y))^2 \, dy \, dx \\ &\leq |f|^2 (\sum_{i \ge n+1} \sum_{j \ge 1} |k_{i,j}|^2). \end{split}$$

Since $|k_{i,j}|_{L^2(X \times X)} < \infty$, the above sum has to go to zero as $n \longrightarrow \infty$, hence we get that

$$|T_n - T| \xrightarrow[n \to \infty]{} 0 \Rightarrow T_n \xrightarrow[n \to \infty]{} T \in K(L^2(X))$$
 (by Exercise 1.3)

Such operators are called *Hilbert-Schmidt* operators, with kernel k. In particular, if $k(x, y) = \overline{k(y, x)}$ as we will see in the next section, the spectral theorem applies and we get a decomposition of finite dimensional eigenspaces for T.

2 Spectral theory for integral operators

Now let $G = GL_2(\mathbb{R})^+$, $\Gamma \subset SL_2(\mathbb{R}) := G_1$ a discrete subgroup of G such that $_{\Gamma} \setminus^{\mathcal{H}}$ is compact. Let χ be a unitary character of Γ and $\mathfrak{h} = L^2(_{\Gamma} \setminus^G, \chi)$. Let $\phi \in C_c^{\infty}(G)$ and let (π, H) be an arbitrary representation on a Hilbert space H. We define $\pi(\phi) \in End(H)$ by

$$\pi(\phi)f = \int_{G} \phi(g)\pi(g)f \, dg \text{ for } f \in H, g \in G$$

It is well defined since $g \mapsto \phi(g)\pi(g)f$ is continuous in the compact support of ϕ , and thus Borel-integrable.

Moreover, one has

$$\begin{split} |\pi(\phi)f| &\leq \int_{G} |\phi(g)\pi(g)f| \, dg \\ &\leq |f| \sup_{g \in \overline{Supp(\phi)}} |\pi(g)| \int_{G} |\phi(g)| \, dg \\ &\leq |f|B \int_{G} |\phi(g)| \, dg < \infty. \end{split}$$

Thus $\pi(\phi)$ is a bounded operator.

Now let $\pi = \rho$ the regular right representation of G on \mathfrak{h} (which is unitary) and define for every $\phi \in C_c^{\infty}(G)$ the operator $\rho(\phi) \in \mathcal{L}(\mathfrak{h})$ by

$$(\rho(\phi)f)(g) = \int_{G} \phi(h)(\rho(h)f)(g)dh = \int_{G} \phi(h)f(gh)dh$$

For this operator to be well defined, we need to show that $\rho(\phi)f$ is square integrable. We make use of the unitarity of ρ . Indeed, one has

$$\begin{split} |\rho(\phi)f|^2 &= \langle \,\rho(\phi)f, \rho(\phi)f \,\rangle = \langle \int\limits_G \phi(g)\pi(g)f \,dg, \int\limits_G \phi(h)\pi(h)f \,dh \,\rangle \\ &= \int\limits_G \int\limits_G \phi(g)\overline{\phi(h)} \langle \,\rho(g)f, \rho(h)f \,\rangle \,dg \,dh. \end{split}$$

Since ρ is unitary, $\rho(f), \rho(g)$ are unitary operators and therefore, by Cauchy-Schwartz

$$|\langle \rho(g)f, \rho(h)f \rangle|^2 \leq \langle \rho(g)f, \rho(g)f \rangle \langle \rho(h)f, \rho(h)f \rangle \leq \langle f, f \rangle^2$$

Thus

$$\left|\left\langle \rho(g)f,\rho(h)f\right\rangle\right| \le \left\langle f,f\right\rangle$$

and finally

$$|\rho(\phi)f|^2 \le |f|^2 (\int\limits_G |\phi(g)| \, dg)^2 < \infty$$

Recall that every element of G has a representation

$$\gamma hu \in {}_{\Gamma} \backslash^G /_{Z^+} \quad \text{and} \ f(\gamma hu) = \chi(\gamma) f(h) \ \ \forall f \in C^\infty({}_{\Gamma} \backslash^G, \chi)$$

where $Z^+ = \langle uI_2 \rangle_{u>0}$ is the subgroup (in the center of G) of positive scalar matrices. For $\theta \in \mathbb{R}$, let $\kappa_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \in K = SO_2$

Proposition 2.1. Let $\phi \in C_c^{\infty}(G)$

- (i) The operator $\rho(\phi) \in \mathcal{L}(\mathfrak{h})$ is a Hilbert-Schmidt operator. In particular, it is compact and maps $L^2(\Gamma \setminus^G, \chi)$ to $C^{\infty}(\Gamma \setminus^G, \chi)$.
- (ii) if $\phi(g) = \overline{\phi(g^{-1})}$ then $\rho(\phi)$ is self-adjoint.
- (iii) if $\phi(\kappa_{\theta}g) = e^{-ik\theta}\phi(g)$ then $\rho(\phi)$ maps $L^2(\Gamma\backslash^G, \chi)$ to $C^{\infty}(\Gamma\backslash^G, \chi, k)$.

Proof. (i) Consider

$$(\rho(\phi)f)(g) = \int_{G} f(gh)\phi(h) \, dh$$

First we make the substitution $h \mapsto g^{-1}h$ and use our representation of $g \in G$ as $\gamma hu \in {}_{\Gamma} \backslash {}^{G}\!/_{Z^+}$

$$\begin{aligned} (\rho(\phi)f)(g) &= \int_{G} f(h)\phi(g^{-1}h) \, dh \\ &= \int_{\Gamma \setminus G/_{Z^+}} \int_{Z^+} f(\gamma hu)\phi(g^{-1}\gamma hu) \, du \, dh \, d\gamma. \end{aligned}$$

This is possible since the groups involved in the decomposition are unimodular. it is mainly due to the G-invariance of the Haar measures on these cosets. As Γ is discrete, we get

$$(\rho(\phi)f)(g) = \int_{\Gamma \backslash G/_{Z^+}} \int_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma)f(h)\phi(g^{-1}\gamma hu) \, du \, dh.$$

Let $\mathcal F$ be the closure of a fundamental domain for ${}_{\Gamma}\backslash {}^G\!/_{Z^+}$ we can write

$$\begin{aligned} (\rho(\phi)f)(g) &= \int_{\mathcal{F}} f(h) \int_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma) \phi(g^{-1}\gamma hu) \, du \, dh \\ &= \int_{\mathcal{F}} f(h) K(g,h) \, dh. \end{aligned}$$

We are left to prove that

$$K(g,h) = \int_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma) \phi(g^{-1}\gamma hu) \, du$$

is a *Hilbert-Schmidt* kernel, i.e. $K \in L^2(\mathcal{F} \times \mathcal{F})$. ϕ is smooth and supported in K' (compact) and since Γ is discrete, one has

$$\phi(g^{-1}\gamma h) \neq 0 \Leftrightarrow g^{-1}\gamma h \in K \Leftrightarrow \gamma \in g.K.h^{-1} \cap \Gamma$$
 which is finite

Thus, we have a well behaved finite sum of smooth compactly supported functions, one can indeed deduce that $K_g(h)$ and $K_h(g)$ are smooth, and thus so is K(g, h). In particular, it is square integrable on the compact $\mathcal{F} \times \mathcal{F}$.

Now let $f \in L^2(\Gamma \setminus G, \chi)$, then by Cauchy-Schwartz

$$\int\limits_{\Gamma \backslash^G/_{Z^+}} |f(g)| \, dg \leq |f| |1| < \infty$$

Hence, as K(g,h) is smooth, the integral $\int_{\mathcal{F}} f(h)K(g,h) dh$ converges for every gand thus $\rho(\phi)f \in C^{\infty}(\Gamma \setminus^{G}, \chi)$.

(ii) Now suppose that $\phi(g) = \overline{\phi(g^{-1})}$ one sees that

$$\begin{split} \overline{K(h,g)} &= \int\limits_{Z^+} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} \phi(h^{-1} \gamma g u) \, du \\ &= \int\limits_{Z^+} \sum_{\gamma \in \Gamma} \overline{\chi(\gamma)} \phi(u^{-1} g^{-1} \gamma^{-1} h) \, du \\ &= \int\limits_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma^{-1}) \phi(g^{-1} \gamma^{-1} h u^{-1}) \, du \quad (\chi \text{ is unitary}) \\ &= \int\limits_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma) \phi(g^{-1} \gamma h u^{-1}) \, du. \end{split}$$

We make the change of variable $u \mapsto u^{-1}$. As Z^+ is unimodular (Abelian), its Haar measure is invariant under this change and one has

$$\overline{K(h,g)} = \int_{Z^+} \sum_{\gamma \in \Gamma} \chi(\gamma) \phi(g^{-1}\gamma hu) \, du = K(g,h).$$

Finally,

$$\langle \rho(\phi)f), f' \rangle = \int_{\mathcal{F}} (\int_{\mathcal{F}} f(h)K(g,h) \, dh)f'(g) \, dg$$

$$= \iint_{\mathcal{F}} f(h)\overline{f'(g)K(h,g)} \, dh \, dg$$

$$= \int_{\mathcal{F}} f(h)\overline{(\int_{\mathcal{F}} f'(g)K(h,g) \, dg)} \, dh$$

$$= \langle f, \rho(\phi)f' \rangle.$$

(iii) Suppose $\phi(\kappa_{\theta}g) = e^{-ik\theta}\phi(g)$, than one has

$$(\rho(\phi)f)(g\kappa_{\theta}) = \int_{G} f((g\kappa_{\theta}h)\phi(h) \, dh$$

By making the change of variable $h \mapsto \kappa_{\theta}^{-1} h$, one has

$$\begin{aligned} (\rho(\phi)f)(g) &= \int\limits_{G} f((gh)\phi(\kappa_{\theta}^{-1}h) \, dh \\ &= e^{ik\theta} \int\limits_{G} f(gh)\phi(h) \, dh = e^{ik\theta}(\rho(\phi)f)(g). \end{aligned}$$

Thus $\rho(\phi)f \in C^{\infty}(\Gamma \setminus^G, \chi, k)$.

Recall that $C^{\infty}({}_{\Gamma}\backslash^{G}, \chi, k) = \{f \in C^{\infty}({}_{\Gamma}\backslash^{G}, \chi)/f(g\kappa_{\theta}) = \rho(\kappa_{\theta})f = e^{-ik\theta}\phi(g)\}.$ We have seen before that with a convenient choice of ϕ , we can restrict the range of our operator $\rho(\phi)$ enough to $C^{\infty}({}_{\Gamma}\backslash^{G}, \chi, k)$ so that it commutes with Δ . We shall see that with a right adjustment we might be able to choose such ϕ .

Let $\pi : G \to End(H)$ be a unitary representation of G on a Hilbert space H. By

the same reasoning as in the proof above, one sees that

$$\begin{split} \langle \, \pi(\phi)v, w \, \rangle &= \int_{\mathcal{G}} \phi(g) \langle \, \pi(g)v, w \, \rangle \, dg \\ &= \int_{\mathcal{G}} \phi(g) \langle \, v, \pi(g^{-1})w \, \rangle \, dg \quad (\pi(g) \text{ is unitary}) \\ &= \langle \, v, \int_{\mathcal{G}} \overline{\phi(g)} \pi(g^{-1})w \, dg \, \rangle \\ &= \langle \, v, \int_{\mathcal{G}} \phi(g^{-1}) \pi(g^{-1})w \, dg \, \rangle \qquad (\overline{\phi(g^{-1})} = \phi(g)) \\ &= \langle \, v, \pi(\phi)w \, \rangle \qquad (\text{ by making } g \mapsto g^{-1}) \end{split}$$

Lemma 2.2. Let $\pi : G \to End(H)$ be a unitary representation of G on a Hilbert space H and let $0 \neq f \in H$.

(i) Let $\epsilon > 0$, then there exists $\phi \in C_c^{\infty}(G)$ such that $\pi(\phi)$ is self-adjoint and $|\pi(\phi)f - f| < \epsilon$. In particular, if $\epsilon < |f|$ then

 $\pi(\phi)f \neq 0$

(ii) If $\pi(\kappa_{\theta})f = e^{ik\theta}f$ for all $\kappa_{\theta} \in K = SO_2$ then we may choose ϕ so that

$$\phi(\kappa_{\theta}g) = \phi(g\kappa_{\theta}) = e^{ik\theta}\phi(g)$$

Proof. (i) As $g \mapsto \pi(\phi) f$ is continuous, we can find an open neighbourhood $U \in \mathcal{V}_{I_2}$ such that

$$|\pi(g)f - f| < \epsilon \ \forall g \in U$$

Let $\phi_0 \in C_c^{\infty}(\mathbb{R})$, ϕ_0 positive and $Supp(\phi_0) \subset U$ such that $\int_G \phi_0(g) dg = 1$. We assume that $\phi_0(g) = \phi_0(g^{-1})$, by Proposition 2.1 (ii), $\pi(\phi_0)$ is self-adjoint. We have

$$|\pi(\phi_0)f - f| = |\int_G \phi_0(g)(\pi(g)f - f) \, dg| \le \int_G \phi_0(g)|\pi(g)f - f| \, dg < \epsilon$$

Moreover, if $\epsilon < |f|$ then clearly $\pi(\phi_0) f \neq 0$.

(ii) Now we shall construct carefully our ϕ_0 . Observe first that the map

$$\sigma: G \times K \longrightarrow G$$
$$(g, \kappa) \longmapsto \kappa g \kappa^{-1}$$

is continuous, hence σ^{-1} is open in $G \times K$. As $(1, \kappa) \in \sigma^{-1}(U)$ for all $\kappa \in K$, there exists an open neighbourhood $U' \in \mathcal{V}_{(I_2,\kappa)}$ such that $U' = V_{\kappa} \times W_{\kappa} \subset G \times K$.

As K is compact and W_{κ} is an open cover of K, there exists an r > 0 such that $\{W_{\kappa_i}\}_{0 \le i \le r}$ is a finite open cover of K. By taking

$$V = \bigcap_{i=1}^{r} V_{\kappa_i} \Rightarrow \kappa V \kappa^{-1} \subset U \quad \forall \kappa \in K$$

Thus we obtain a neighbourhood in the identity of G with the desired property. Now let $\phi_1 \in C_c^{\infty}(\mathbb{R})$, ϕ_1 positive and $Supp(\phi_1) \subset V$ such that $\phi_1(g) = \phi_1(g^{-1})$ and let

$$\phi_0(g) = \int\limits_K \phi_1(\kappa g \kappa^{-1}) \, dg$$

Then ϕ_0 is a positive function with support in U that satisfies $\phi_0(g) = \phi_0(g^{-1})$ and $\phi_0(\kappa g \kappa^{-1}) = \phi_0(g)$ for all $\kappa \in K$. Assume now that $\pi(\kappa_\theta) f = e^{ik\theta} f$, since G = GK and K is compact, one has

$$\begin{aligned} \pi(\phi_0)f &= \int_G \phi_0(h)\pi(h)f\,dh = \int_G \int_K \phi_0(h\kappa)\pi(h\kappa)f\,dh\,d\kappa \\ &= \int_G \frac{1}{2\pi} \int_0^{2\pi} \phi_0(h\kappa_\theta)\pi(h\kappa_\theta)f\,dh\,d\theta = \int_G \frac{1}{2\pi} \int_0^{2\pi} \phi_0(h\kappa_\theta)\pi(h)\pi(\kappa_\theta)f\,dh\,d\theta \\ &= \int_G \left[\frac{1}{2\pi} \int_0^{2\pi} e^{ik\theta}\phi_0(h\kappa_\theta)\,d\theta\right]\pi(h)f\,dh = \pi(\phi)f. \end{aligned}$$

where

$$\phi(g) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{ik\theta} \phi_0(h\kappa_\theta) \, d\theta$$

and clearly

$$\phi(\kappa_{\theta}g) = \phi(g\kappa_{\theta}) = e^{ik\theta}\phi(g) \text{ and } \phi(g) = \overline{\phi(g^{-1})}$$

A representation (π, H) of a group G on a Hilbert space H is said to be *irreducible* if H has no proper non-zero closed subspace that is invariant under π . If π is unitary, V is a proper non-zero π -invariant subspace of H, then there exists a proper non-zero closed subspace V^{\perp} such that

$$H = V \oplus V^{\perp}$$

We start with the following :

Exercise 2.3. Let H be a Hilbert space and $\pi : H \to End(H)$ be a unitary representation. Let

$$H_k = \{ f \in H/\pi(\kappa_\theta) f = e^{2i\pi k\theta} f \}$$

Show that the H_k are orthogonal, and that

$$H = \bigoplus_{k \in \mathbb{Z}} H_k$$

We will use this result in the next proposition

Proposition 2.4. Let H be a non-zero closed subspace of \mathfrak{h} , which is closed under the action of G. Then we have a Hilbert space decomposition

$$H = \bigoplus_{k \in \mathbb{Z}} H_k$$

where $H_k = \{f \in H/\rho(\kappa_{\theta})f = e^{2i\pi k\theta}f\}.$

Moreover, if $H_k \neq 0$ then Δ has a non-zero eigenvector in $H_k \cap C^{\infty}(\Gamma \setminus^G, \chi)$. Proof. We know that for $g \in G$, $\Delta \circ \rho(g) = \rho(g) \circ \Delta$. Thus, one has

$$\begin{aligned} (\Delta \circ \rho(\phi))f &= \int_{G} \phi(g)(\Delta \circ \rho(g))f \, dg \\ &= \int_{G} \phi(g)(\rho(g) \circ \Delta)f \, dg = (\rho(\phi) \circ \Delta)f \end{aligned}$$

Now let H be a closed G-invariant subspace of \mathfrak{h} , from Exercise (2.3), one has a Hilbert space decomposition $H = \bigoplus H_k$ where $\rho(\kappa_\theta) f = e^{2i\pi k\theta} f$ for $f \in H_k$. We choose a k such that $H_k \neq 0$ and let $0 \neq f_0 \in H_k$.

From Lemma (2.2) there exists a $\phi \in C_c^{\infty}(G)$ such that $\rho(\phi)f_0 \neq 0$ and $\phi(\kappa_{\theta}g) = \phi(g\kappa_{\theta}) = e^{ik\theta}\phi(g)$. By proposition (2.1) $\rho(\phi)$ is a self-adjoint compact operator that maps H into $H \cap C^{\infty}(\Gamma \setminus^G, \chi, k) = H_k \cap C^{\infty}(\Gamma \setminus^G, \chi)$. By the spectral theorem, H has an ONB $\{f_i\}_{i\geq 1}$ with respective eigenvalues λ_i . Pick a $0 \neq \lambda \in H_k$ then E_{λ_i} is finite dimensional and since Δ commutes with $\rho(\phi), E_{\lambda}$ is invariant under Δ .

By the fundamental theorem of Algebra, every linear operator on a finite dimensional complex vector space has an eigenvalue, thus $\rho(\phi)$ has at least an eigenvector in $H_k \cap C^{\infty}(\Gamma \setminus G, \chi)$.

Theorem 2.5. The space $\mathfrak{h} = L^2(\Gamma \setminus G, \chi)$ decomposes into a Hilbert space direct sum of subspaces that are invariant and irreducible under the right regular representation ρ .

Proof. Let Σ be the set of all sets S of irreducible invariant subspaces of $L^2({}_{\Gamma}\backslash^G, \chi)$ such that the elements of S_i are mutually orthogonal. By ordering Σ by inclusion, Zorn's lemma implies that Σ has a maximal element, say S. Let H' be the orthogonal complement of the closure of the direct sum of the elements of S. We want to show that H' = 0.

Suppose not, and let $0 \neq f \in H'$. The goal is to construct an irreducible subspace of

H' which will contradict the maximality of S.

Let $\phi \in C_c^{\infty}(G)$ such that $\rho(\phi)$ is self-adjoint, and $\rho(\phi)f \neq 0$ (Lemma (2.2)). By the spectral theorem, one has a non-zero eigenvalue λ with a finite dimensional eigenspace $E_{\lambda} \subset H'$.

Let L_i be a non-zero invariant subspace of E_{λ} under $\rho(\phi)$ and consider $L_0 = \min_i \{E_{\lambda} \cap L_i\}$ (such a subspace exist since the L_i are finite dimensional) Let

$$V = \bigcap \{ W \subset H' / L_0 = E_\lambda \cap W \} \subset H'$$

We only need to show that V is irreducible, which will as expected contradict the maximality of S.

Suppose it is not, and consider V_1, V_2 invariant subspaces of V such that $V = V_1 \oplus V_2$. Let $0 \neq f_0 \in V$ such that $f_0 = f_1 + f_2$ with $f_i \in V_i$ for i = 1, 2. By definition of ρ , every closed G-invariant subspace V_i is also invariant under $\rho(\phi)$. One gets

$$(\rho(\phi)f_1 - \lambda f_1) + (\rho(\phi)f_2 - \lambda f_2) = \rho(\phi)f_0 - \lambda f_0 = \rho(\phi)f_0 - \rho(\phi)f_0 = 0$$

Thus $\rho(\phi)f_i = \lambda f_i$ for i = 1, 2.

Without loss of generality, suppose $f_1 \neq 0$. Then $f_1 \in E_{\lambda} \cap V_1 \subset L_0$, and by minimality, $E_{\lambda} \cap V_1 = L_0$.

But since $V \subset V_1$ that would imply that $V = V_1$ which is impossible since V_1 is proper. Hence V is irreducible and thus the result.

3 Spectral decomposition

3 Spectral decomposition

Let $k \in \mathbb{R}$ and $\sigma : \kappa_{\theta} \mapsto e^{ik\theta}$ be the character of $K = SO_2$. Let $R_{\sigma} := C^{\infty}(K \setminus G/K, \sigma)$ be the **commutative** convolution subring of smooth compactly supported functions ϕ that satisfy

$$\phi(\kappa_1 g \kappa_2) = \sigma(\kappa_1) \phi(g) \sigma(\kappa_2) \quad \forall \kappa_1, \kappa_2 \in K, \ \forall g \in G$$

We define a *character* of this ring to be a ring homomorphism into \mathbb{C} .

Theorem 3.1. Let $\xi \in \text{Hom}_R(R_\sigma, \mathbb{C})$ be a character of R_σ , and let H_ξ be the space of $f \in L^2({}_{\Gamma}\backslash^G, \chi, k)$ that satisfies $\rho(\phi)f = \xi(\phi)f$ for all $\phi \in R_\sigma$.

- (i) The space H_{ξ} is a finite dimensional subspaces of $C^{\infty}(\Gamma)^{G}, \chi, k$)
- (ii) For all $\xi \neq \eta$ characters of R_{σ} , $H_{\xi} \perp H_{\eta}$.

(iii)

$$L^{2}(\Gamma \backslash^{G}, \chi, k) = \bigoplus_{\substack{\xi \in \operatorname{Hom}_{R}(R_{\sigma}, \mathbb{C}) \\ H_{\xi} \neq 0}} H_{\xi}$$

Proof. (i) Suppose $0 \neq f \in H_{\xi}$. By Lemma (2.2), there exists $\phi \in R_{\sigma}$ such that

$$\rho(\phi)f = \xi(\phi)f \neq 0 \quad \Rightarrow \quad \xi(\phi) \neq 0$$

Put $\lambda = \xi(\phi) \in \mathbb{C}^*$. By the spectral theorem, the eigenspace E_{λ} is finite dimensional, and since by definition $H_{\xi} \subset E_{\lambda}$, we have the result.

(ii) Now let $\eta, \xi \in \operatorname{Hom}_R(R_\sigma, \mathbb{C})$ such that $\eta \neq \xi$. Then there exists $\phi \in R_\sigma$ such that $\eta(\phi) \neq \xi(\phi)$.

We write $\phi = \phi_1 + i\phi_2$, where

$$\phi_1 = \frac{1}{2}(\phi(g) + \overline{\phi(g^{-1})}), \quad \phi_2 = \frac{1}{2i}(\phi(g) - \overline{\phi(g^{-1})})$$

Since

$$\overline{\phi_1(g^{-1})} = \frac{1}{2}(\overline{\phi(g^{-1})} + \phi(g)) = \phi_1(g)$$

$$\overline{\phi_2(g^{-1})} = -\frac{1}{2i}(\overline{\phi(g^{-1})} - \phi(g)) = \frac{1}{2i}(\phi(g) - \overline{\phi(g^{-1})}) = \phi_2(g)$$

By proposition (2.1) (ii), $\rho(\phi_1), \rho(\phi_2)$ are self-adjoint.

Now without loss of generality, assume $\rho(\phi)$ is self-adjoint (by simply choosing either ϕ_1 or ϕ_2) then

$$\begin{array}{cccc} E_{\xi(\phi)} & \bot & E_{\eta(\phi)} \\ \cup & & \cup \\ H_{\xi} & \bot & H_{\eta} \end{array}$$

3 Spectral decomposition

(iii) As done before, we suppose that there exists an orthogonal supplement H' such that

$$L^{2}(\Gamma \backslash^{G}, \chi, k) = H' \oplus \bigoplus_{\substack{\xi \in \operatorname{Hom}_{R}(R_{\sigma}, \mathbb{C}) \\ H(\xi) \neq 0}} H_{\xi}$$

And we show that H' = 0.

Suppose it's not, and let $0 \neq f \in H'$. By lemma (2.2) $\exists \phi_0 \in R_{\sigma}$ such that $|\rho(\phi)f - f| < \epsilon$. Hence we can arrange so that $\rho(\phi)f$ and f are not orthogonal. By the spectral theorem, we have an ONB $\{f_i\}_{i\geq 1}$ of eigenvectors and thus the spectral expansion

$$\rho(\phi)f = \sum_{i \ge 1} \lambda_i f_i$$

As $\rho(\phi)f$ is not orthogonal to f, there exists an $i \ge 1$ such that f_i is not orthogonal to f.

Let $V = E_{\lambda_i}$ be the eigenspace consisting of such eigenvector. Then V is finite dimensional and since R_{σ} is commutative, V is invariant under $\rho(\phi)$ for all $\phi \in R_{\sigma}$. Indeed, one has

$$\pi(\phi)(\lambda_i f_i) = \pi(\phi)(\pi(\phi_0)f_i) = \pi(\phi\phi_0)f_i)$$
$$= \pi(\phi_0\phi)f_i) = \pi(\phi_0)(\pi(\phi)f_i) \in E_{\lambda_i}$$

Thus, we have

$$V = \bigoplus_{\substack{\xi \in \operatorname{Hom}_R(R_\sigma, \mathbb{C}) \\ \xi(\phi_0) = \lambda_i}} H_{\xi}$$

But since f is not orthogonal to f_i , it can not be orthogonal to all these spaces, thus H' = 0 and hence our result.

We are finally able to present a version of the spectral theorem for Δ_k , mainly we have the following result

Corollary 3.2 (Main result). The space $L^2(\Gamma \setminus \mathcal{H}, \chi, k)$ decomposes into a Hilbert space direct sum of eigenspaces for Δ_k .

Recall that

$$\begin{array}{ccc} L^2({}_{\Gamma}\!\!\setminus^{\!\!\mathcal{H}},\chi,k) &\cong & L^2({}_{\Gamma}\!\!\setminus^{\!\!G},\chi,k) \\ \Delta_k &\longleftrightarrow & \Delta \end{array}$$

To see how this is a direct consequence of Theorem (3.1), observe that since Δ commutes with the operators $\rho(\phi)$ on R_{σ} , the spaces H_{ξ} are Δ -invariant and Δ induces a self-adjoint compact operator on each of them, and thus each of the H_{ξ} decomposes into a direct sum of Δ -Eigenspaces.

References

References

[1] D. Bump. Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics 55, 1998.